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Not everything that counts can 
be counted, and not everything 

that can be counted counts.

(attributed to Einstein)

Goethe

•Mathematicians are like 
Frenchmen: whenever you say 
something to them, they 
translate it into their own 
language, and at once it is 
something entirely different.

Kolmogorov

• My entirely general, half-philosophical 
reflections took more of my time and 
energy than it might seem at first sight. 
In elaborating quite general views, the 
outcome of one’s efforts is not a 
formulation of precisely fixed ``results’’ 
but an overall restructuring of one’s 
own thinking and the arrangement of all 
facts in due perspective.  Therefore, 
outwardly such work may appear to be 
sheer waste of a lot of effort and time 
with nothing ``new’’ really discovered.



• My debt to Pat Suppes will become 
evident in the course of this talk.

• I speak against the prevailing 
``unassailable’’ position that there is 
only one mathematical model for 
probability that can be given any of the 
usual ``interpretations’’.

• On the positive side, I will present 
several alternative mathematical 
models, based on orders, sets of 
measures, and upper and lower 
probabilities, that can be used for 
different applications and types of 
nondeterministic phenomena.

• My goal is to enlarge the mathematical space 
of probability representations to include 
ones that can more faithfully represent 
credibly possible types of non-determinate 
phenomena.

• Different nondeterministic applications can 
require different meanings for the probability 
concept(s) needed to describe their 
nondeterministic sources of chance, 
indeterminacy, or uncertainty.

• I prefer to use ``meaning’’ as opposed to 
``interpretation’’ that presumes a pre-
existing set of axioms.

• Meaning precedes axiomatization.

Spectrum of Meanings



• These different meanings have properties 
that require mappings from the  ``empirical’’ 
realm of phenomena and meanings into 
possibly different mathematical relational 
systems in the formal realm.

• Mathematical probability is expressed by the 
chosen mathematical relational system.

• A key, usually neglected, question is the 
match between the expressiveness of the 
mathematical model and the nature of the 
application.

• A mathematical model is too expressive if it 
allows distinctions that are empirically 
meaningless---e.g., a real-valued IQ as a 
measure of some aspect of intelligence.

• The model is insufficiently expressive if it 
cannot represent important distinctions in 
the empirical realm---e.g., standard 
probability for quantum mechanics.

• Major meanings can be grouped under:

• Physically-determined: probability from physics 
rather than from pre-existing probabilities, 
e.g., through statistical or quantum 
mechanics, propensity

• Chance: objective claims about unobserved 
experimental outcomes based upon 
observed outcomes: e.g., frequentist---
repeated, unlinked experiments---core of 
physical science relation of theory to 
experiment

• Uncertainty, subjective, decision-oriented---
rational individual decision-making, degree of 
belief, propositional attitude 

• Epistemic, logical, indeterminate---relations of 
inductive support between statements in a 
formal language, formal inductive reasoning, 
explicating indeterminacy.



Physically-Determined: 
Propensity Interpretation

• QM probability, applying as it does to the 
single case, is more understandable as a  
Popperian propensity.

• On the propensity account we can make 
sense of probability for a single experimental 
outcome as computed by QM.

• The display of propensity returns us to finite 
relative frequency. 

• More needs to be done on the mathematical 
representation of propensity probability.

Quantum 
Mechanics

Max Born’s 1926 interpretation 
of Schrodinger’s wave function as 

yielding a probability density

Randomness in the physical realm 
is inextricably entrenched in QM

``for his fundamental research, 
especially for his statistical 
interpretation of the wave 

function.’’

Observables and State in QM

• The state space is a closed, infinite-
dimensional Hilbert space.

• Observables correspond to Hermitian 
operators on the state space.

• The state and the operator yield the 
probabilities for possible measurements.

• Observation of an event corresponds to a 
projection of the state onto a closed linear 
subspace of the Hilbert space.

Heisenberg’s Uncertainty Relation

• If ÂB̂ != B̂Â, then the op-
erators do not commute.

•Observables corresponding
to non-commuting opera-
tors are not simultaneously
measurable. The order of
measurement matters.

•While we can measure each
of A and B arbitrarily ac-
curately, we cannot do so
for both A and B.

•There is an irreducible min-
imum to the product of the
variances of the two mea-
surements.

•Boolean event logic fails and
the event collection is a non-
Boolean lattice.



Failure of Expressiveness of Standard 
Probability in QM

• The order of observation of canonically 
conjugate observables affects the state.

• The collection of observable events is non-
Boolean (lattice of subspaces).

• Distributivity of union and intersection fails.

• A consequent failure is that QM probability 
does not always obey the formula for the 
probability of a non-disjoint union of two 
events.

•Modularity

P (A∪B) = P (A)+P (B)−P (A∩B)

This holds for events mea-

sured by compatible exper-

iments in which projection

is onto nested subspaces.

• It does not hold in general,

unlike the case for standard

probability.

• See Jauch 6-3.

1

Chance

• Specifying the chance behavior of a physical 
system through probability is done through 
statistical mechanics or quantum mechanics.

• Chance problematically links to 
experimental outcomes through frequencies 
of occurrence.

• What properties of the past observed data 
are reliably projectable into claims about 
future data generated by the same source?

• Model of repeated, unlinked experiments.

• What properties of past trials are stable 
enough to be projected onto future trials?

• Future relative frequency of occurrence is the 
usual meaning assigned to chance 
phenomena in the physical realm.

• It is meant to be inferred from past or 
observed trials and to be stable over trials.

Chance and Frequency



• Is there room for limited precision in 
objective physical probability that parallels 
that found for subjective probability through 
the use of upper and lower previsions?

• Are unstable relative frequencies an 
indicator of this imprecision?

The Old Masters on Irregularity

• Leibniz to Bernoulli: The dif-

ficulty in it seems to me to

be that contingent things or

things that depend on infinitely

many circumstances cannot be

determined by finitely many

results, for nature has its habits,

following from the return of

causes, but only for the most

part.

Who is to say that the fol-

lowing result will not diverge

somewhat from the law of all

the preceding ones—because

of the mutabilities of things?

New diseases attack humankind.

Therefore even if you have ob-

served the results for any num-

ber of deaths, you have not

therefore set limits on the na-

ture of things so that they could

not vary in the future.

• De Moivre: ...if we should sup-

pose the Event not to happen

according to any Law, but in a

manner altogether desultory and

uncertain; for then the Events

would converge to no fixt [sic]

Ratio at all.



• Poisson: But one should not

lose sight of the fact that he

[Bernoulli] supposes that the

chances remain constant, while,

to the contrary, the chances

of physical phenomena and of

moral matters almost always

vary continually, without any

regularity and often to a great

extent.

• Venn: So in Probability, that

uniformity which is found in

the long run, and which presents

so great a contrast to the indi-

vidual disorder, though durable

is not everlasting.

Keep on watching it long enough,

and it will be found almost in-

variably to fluctuate, and in

time may prove as utterly ir-

reducible to rule, and there-

fore as incapable of prediction,

as the individual cases them-

selves.

• These citations suggest the existence of 
fluctuations in the very long run.

• We can go beyond the usual case of terminal 
relative frequency r_n after n trials as being 
the only projectable quantity.

• Measure of the range of recent (from trial m 
to trial n) fluctuations in relative 
frequencies?

• Leads us to comparative probability orderings 
and to upper and lower probabilities 
establishing probability intervals.



Frequentist Comparative Probability

• Consider speech, natural language text, 
usenet postings, economic data such as 
stock prices, social data on attitudes or 
mobility, and the weather.

• Huge quantities of available objective data.

• Frequentist concept should apply

• Do all such applications admit of accurate 
numerical probability models?

Comparative Probability

•A ! B is read as “event A

is as least as probable as

event B”.

•Axiomatized in the early

1930s by Bruno de Finetti

for subjective probability.

• Studied in the 1970s by my

students (especially Michael

Kaplan) and me.
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Order and Frequency

•Let rn(A) denote the rela-

tive frequency of occurrence

of event A in n repeated

experiments.

•Let A ! B denote “event

A is at least as probable as

event B.”

•Relate the two through,

A ! B ⇐⇒ rn(A) ≥ rn(B).
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• Inductively projecting only the information 
on comparisons of relative frequencies makes 
for greater stability than projecting the 
numerical values themselves when they are 
sufficiently unequal.

• This correspondence implies the following 
properties of the comparative probability 
relation that are then taken to be defining.



•! is a complete order on

an algebra A of events.

•False ∅ ! Ω.

•For all A ∈ A, A ! ∅.
•

A ! B ⇐⇒

A− AB ! B − AB.
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CP Orders and Probability

•The CP order ! is additive
if there exists a probability
measure P (generally, not
unique) and

A ! B ⇐⇒ P(A) ≥ P(B).

•! is almost additive if there
exists P and

A ! B⇒ P(A) ≥ P(B).

•! is weakly additive if there
exists P and

P(A) ≥ P(B)⇒ A ! B.

•! is (strictly) nonadditive
if none of the above hold.

•CP-based conditions deter-
mining additivity, almost ad-
ditivity, and nonadditivity
were developed by Michael
Kaplan.

•The additive CP orders are
the only ones that admit
of a joint order of indepen-
dent type for any number
of repetitions of a given CP
order.

•These conditions underline
the nontriviality of assum-
ing the existence of joint
experiments—in this case,
of joint CP orders.

• Probability order relations can provide less 
precise summations of frequentist data that 
more accurately reflect the extent of 
instability in this data.

• We now show how frequentist data can 
yield probability order relations that are 
inconsistent with any probability measure.



Upper and Lower Probability

•Relation to relative frequen-

cies that fluctuate signifi-

cantly.

P̄ (A) = max
n0≤j≤n

rj(A);

P (A) = min
n0≤j≤n

rj(A).
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•Asymptotic relative frequen-

cies:

P̄ (A) = lim sup
n→∞

rn(A);

P (A) = lim inf
n→∞

rn(A).

•With this definition, P̄ and

P always exist.

•Key new axioms of duality

and sub- and superadditiv-

ity.

(Duality) P̄ (A) = 1− P (Ac).

(Subadditivity) P̄ (A ∪B) ≤ P̄ (A) + P̄ (B).

(Superadditivity) A ⊥ B ⇒

P (A ∪B) ≥ P (A) + P (B).
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•Variety of ways that you

can induce a comparative

probability relation ! from

upper and/or lower proba-

bilities.

A ! B ⇐⇒ P̄ (A) ≥ P̄ (B);

A ! B ⇐⇒ P (A) ≥ P (B);

A ! B ⇐⇒ P (A) ≥ P̄ (B).

•The CP relations so induced

will not generally obey the

axioms given earlier for CP.



Stationary Random Sequences

• Kumar, Grize, Papamarcou, and Sadrolhefazi 
developed lower and upper probability 
models for stationary random sequences of 
bounded random variables.

• The lower probability function is time shift 
invariant and therefore stationary.

• It is also monotonely continuous along 
convergent sequences of cylinder sets, the 
observable events.

• Particular attention was paid to the event of 
convergence of relative frequencies in this 
model.

• The stationarity convergence (ergodic) theorem 
of standard probability asserts that every 
stationary random process of finite mean 
random variables has time averages that 
converge almost surely (possibly to a non-
degenerate random variable).

• The goal was to show that this was not 
necessarily true of lower probability models.

• That this was indeed the case demonstrated 
that the imposition of convergence in all 
cases by standard probability was too 
restrictive.

• In this sense, standard probability is 
insufficiently expressive and forces an 
unwarranted metaphysical commitment.

Background to Random Sequences
•Let X = {Xi} denote the
set of doubly infinite sequence
of random variables that are
uniformly bounded.

•Let C = {C} be the set of
cylinder sets in X—those
events whose outcomes are
determined by finitely many
of the random variables in
the sequence.

• Dn is the subset of C of sets
of span or diameter less than
or equal to n.

1



• A denotes the smallest σ-
algebra containing all the
cylinder sets.

•Let T denote the right-shift
operator (TX)i = (X)i+1 =
Xi+1.

•The invariant sets are

I = {A : TA = T−1A = A}.
•The tail events T is the
limit on n of the σ-algebras
defined on Xn, Xn+1, . . . and
includes convergence and di-
vergence events.

Stationarity
•A set function φ is (strictly)
stationary if

(∀A ∈ A) φ(TA) = φ(T−1A) = φ(A).

• If P is a stationary proba-
bility measure on A then

lim
n→∞

1

n

n∑

i=1

f (Xi) = Ef(X)|I), a.s.

provided Ef(X) is finite.

•We will show that there ex-
ist stationary lower proba-
bilities for which the pre-
ceding stationarity conver-
gence theorem fails.

• If this is the case, then lower
probabilities can generate
models that cannot be ac-
cessed by standard prob-
ability, thereby proving it
to be insufficiently expres-
sive.

LP Models Vacuous on Tail Events
•Let S denote the set of lower
probabilities that are sta-
tionary and monotonely con-
tinuous along C.

•A lower probability P is vac-
uous on A if P (A) = 0, P̄ (A) =
1.

•A theorem (5.8) by Sadrol-
hefazi asserts that given any
lower probability P 0 ∈ S
and an integer n ≥ 1 and
0 < ε < 1, there exists P 1 ∈
S that is vacuous for all events
in the tail algebra T and
satisfies

(∀C ∈ Dn) |P 1(C)− P 0(C)| ≤ ε,

and |P̄1(C)− P̄0(C)| ≤ ε.



•Given any lower probabil-
ity P 0 that is stationary and
monotonely continuous on
the cylinder sets, there ex-
ists a lower probability P 1
that agrees with it, within
any positive specified ε, on
cylinder sets of span no more
than n, yet P 1 is vacuous
or maximally noncommital
on all tail events including
those concerning convergence
of time averages.

• P 0 can be a standard sta-
tionary probability measure.

•Lower probability allows us
to avoid assertions about
what is, in principle, unob-
servable, while at the same
time being able to mimic
any other stationary and mono-
tonely continuous lower prob-
ability on the fundamentally
observable class of cylinder
sets.

• Standard probability does
not have this desirable op-
tion and must make spe-
cific commitments to un-
observable events.

• Uncertainty is faced in individual decision-
making contexts ranging over career 
choices, choosing personal relationships, 
deciding when the ``experts’’ (e.g., doctors) 
disagree, car driving behavior, investments, 
etc. 

• True of mice as well as men.

• The individual has developed over a lifetime 
much ``information’’ about each of these 
areas and little of this information can stated 
explicitly or stated truthfully when forced to  
make it explicit to satisfy an interrogator.

Uncertainty

• Here we deal with uncertainty, degrees of 
belief, or propositional attitudes.

• Whatever the rational desirability (being 
coherent or avoiding a Dutch book) of 
assessing all of these kinds of uncertainty 
through real-valued assessments of standard 
probability, it strains credulity to assume that 
this is commonly possible.

• Look into your own heads on this one!



Dutch Book

•A “horse race” with three

horses H1, H2, H3. Gambles

offered are:

G1 =






1 if H1 wins,

−1 if H1 loses.

G2 =






3 if H2 wins,

−1 if H2 loses.

G3 =






4 if H3 wins,

−1 if H3 loses.

•Buy 100 of G1, 50 of G2,

and 40 of G3.
1

• Peter Walley carefully and extensively 
developed a more realistic approach that 
uses a set of probability measures to represent 
Your state of knowledge.

• No one measure in this set is ``true’’.

• It is only the whole set that is a good 
description of your state of knowledge.

• This yields upper (selling) and lower (buying) 
prices for gambles or random variables and 
to upper and lower probabilities as a special 
case.

• Set of measures M = {ν}

ĒX = sup{EνX : ν ∈M},

EX = inf{EνX : ν ∈M}.

• If ‖M‖ = 1 then

ĒX = EX = EX.

•Gamble X is preferred to

Y if

EX > ĒY.
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•Defining properties of up-

per and lower expectation.

Duality EX = −Ē(−X);

Non-negativity X ≥ 0 ⇒ ĒX ≥ 0;

Homogeneity (∀λ > 0) Ē(λX) = λĒX ;

Sublinearity Ē(X + Y ) ≤ ĒX + ĒY.



• Is there an objective, frequentist counterpart 
to the sound set of measures 
characterization of uncertainty?

• An attempt to identify a counterpart is being 
made by Pablo Fierens, Leandro Rego, and 
myself under the label of ``chaotic 
probability’’.

Imprecision in Physical Probability

• Our motivation is the rational

incorporation of limited pre-

cision in objective physical prob-

ability, as has been found to

be appropriate for subjective

probability.

• We seek a model for time se-

ries from irregular physical or

socioeconomic phenomena.

• Such a view has also been iden-

tified in quantum mechanics.

A Game Between Two Agents

• We can think of the modelM =

{ν} as a partial description of

an Agent 1.

• At a given time i, Agent 1 chooses

a measure νi on X and an ob-

servation Xi = xi is determined

as the outcome of a random

experiment described by νi.

• Agent 1’s choice at time i can

depend upon the past sequences

of observations xi−1.

• (We need to extend this to in-

clude the past sequence of cho-

sen measures νi−1 = (ν1, . . . , νi−1).)

• Agent 1 might be “nature”.



• Agent 2 at time i − 1 knows

xi−1 and X , but not the se-

quence of measures νi−1.

• Consequences for Agent 2 de-

pend upon the rangeM of ac-

tions available to Agent 1.

• We assume that the consequences

depend upon the measures in

M in a continuous fashion with

respect to a metric on mea-

sures to be introduced later.

• The consequences to Agent 2

do not depend upon the ob-

served outcomes {xi}. These

may only be informative about

the sequence of measures.

• Agent 2, thus, has an inter-

est in inferring M, the set of

measures from which Agent 1

is making his choices.

The Stochastic Process Model

• The standard probability of a

given sequence Xn = xn ∈ X∗,

for X finite, is given by

P (Xn = xn) =
n∏

i=1

P (Xi = xi|Xi−1 = xi−1),

where we define x0 to be the

empty string.

• We will refer to P as the pro-

cess measure.

• Given the observations xn, we

require that for each n ≥ i ≥ 1,

M contains the measure

(∀x ∈ X ) νi(x) = P (Xi = x|Xi−1 = xi−1).

The process measure can be

written as

P (Xn = xn) =
n∏

i=1

νi(xi),

•M∗ denotes the set of possible

process measures.



• If we define P as the set of

all probability measures over

the algebra of all subsets of X ,

then

M⊆ P.

• Define the measure selection

function

F : X∗ →M ⊆ P and define

νi = F (xi−1),

νi(xi) = P (Xi = xi|Xi−1 = xi−1).

• F provides a behavioral descrip-

tion of Agent 1.

• If F is too simple, we can infer

it from long enough xn with

high process measure proba-

bility P .

• In this eventuality, we have an

estimable standard stochastic

process.

• If the selection function F is

very complex, say, random, with

selections made in an i.i.d. man-

ner according to some (prior)

distribution on M, we would

not be able to distinguish whether

xn was produced by an i.i.d.

process according to some mea-

sure in ch(M), the convex hull

of M, or by the chaotic prob-

ability model in question.

• The interest in chaotic proba-

bility resides in the little-explored

intermediate realm where we

cannot estimate F but can nonethe-

less reliably estimate M.

• We deviate from the usual ran-

dom process thinking by al-

lowing the sequence of choices

ν1, . . . , νn to have a computa-

tional complexity that grows

with n, when properly defined.



• We do not expect that Agent

1 makes his choices through

a computable function of se-

quences in X∗.

• While noncomputability is not

ruled out by the theory of ran-

dom processes, what is unusual

in our approach is that we care

most about the case where the

process measure P is not ef-

fectively computable.

• A long-studied but less well understood 
notion relates to indeterminacy---the given 
facts or evidence (expressed in a formal 
language) only partially deductively support 
the conclusion or hypothesis.

• Numerical assessments of partial degrees of 
support were first proposed by Leibniz.

Indeterminacy

• This is the area of legal trials (Leibniz’ 
concern) but more generally that of inductive 
reasoning or inference, including statistical 
inference.

• evidence: Of 500 observed birds of various 
colors, 25 are swans, and all swans were 
white.

• hypothesis: all swans are white.

• There is no logical deduction from the 
evidence e to the hypothesis h. 

• Motivated by early work of Keynes, we let  
h|e represent the degree of inductive support 
lent to h by e.



• The “standard approach”

is to assume that there ex-

ists a conditional probabil-

ity P and

h|e ! h′|e′ ⇐⇒ P (h|e) ≥ P (h′|e′).
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• Perhaps this conditional probability comes 
from an argument such as the one made by 
Solomonoff in the early 1960s when he 
derived a universal semicomputable prior.

• Assigning any numerical value, of whatever 
origin, to the support lent by evidence to 
hypothesis will automatically make accessible 
a complete ordering according to this 
support.

• Inductive relations have an inherent 
indefiniteness or imprecision that may not 
be expressible by standard numerical 
probability.

• We hold that standard probability and upper 
and lower probability  are too expressive to 
model inductive support.

• Nor need all pairs h|e and h’|e’  be 
comparable.

• We assume only the exis-

tence of a partial order h|e !
h′|e′ that is read “the in-

ductive support lent by e

to h is at least as great as

that lent by e′ to h′”.

9



• We surveyed meanings of probability 
associated with applications in the domains 
of physically-determined, chance, uncertain, 
and indeterminate phenomena.

• For each such meaning or interpretation we 
offered alternative mathematical models that 
had possible advantages over the standard 
model of a measure.

Summary


