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Background to Inductive 
Inference

• A long-studied but less well understood 
probabilistic notion relates to 
indeterminacy---the given facts or evidence 
(expressed in a formal language) only 
partially deductively support the conclusion or 
hypothesis.

Standard Statistical Model

• ``Evidence’’ maps to ``Data’’

• ``Hypothesis’’ maps to ``Model’’ and/or 
unobserved data.

• Not precise correspondence---our approach 
is more general.

• We do not start with a likelihood function 
or prior over models.

• There is no logical deduction from the 
evidence e to the hypothesis h. 

• Motivated by early work of Keynes, we let  
h|e represent the degree of inductive support 
lent to h by e.



• Numerical assessments of partial degrees of 
support were first proposed by Leibniz. 

• This was meant for the area of legal trials 
(Leibniz’ concern) but more generally that of 
inductive reasoning or inference, including 
statistical inference.

• The ``standard approach’’ is to assume that 
there exists a conditional probability P and  
h|e >= h’|e’ if and only if P(h|e) >=P(h’|e’).

• Where does the conditional probability 
come from in a general setting?

• Perhaps it comes from an argument made by 
Solomonoff in the early 1960s when he 
derived a universal semicomputable prior.

• However, assigning any numerical value, of 
whatever origin, to the support lent by 
evidence to hypothesis will automatically 
make accessible a complete ordering 
according to this support.

• Inductive relations have an inherent 
indefiniteness or imprecision that may not 
be expressible by standard numerical 
probability.

• We hold that standard probability and upper 
and lower probability  are too expressive to 
model inductive support.

• Nor need all pairs h|e and h’|e’  be 
comparable.



• We assume only the existence of a partial 
ordering between pairs h|e and h’|e’ that is 
understood as ``the inductive support lent 
by evidence e to hypothesis h is as at least as 
great as that lent by e’ to h’.

• Our proposal places the think-

ing of Keynes in the context

of computational or algorith-

mic considerations that relate

to Kolmogorov complexity.

• We depart from a real-valued

assessment of inductive sup-

port and consider instead an

ordering of levels of inductive

support.

Syntax

• We take for our simple formal

language one with the syntax

of the set B = {0, 1}∗ of all finite-

length binary-valued strings.

• This set of strings is closed

under concatenation, an op-

eration allowing us to form a

new string from two given strings.

Semantics

• The formal language does not

preserve explicitly the “true-

false” semantics of the origi-

nal language.

• We expect that statements in

the natural language will be

expanded before being encoded

into the formal language so as

to appear with their various

meanings.



• For example, if the word “swan”

appears in the natural language

statement then there will be a

full presentation about swans

including other text usages, im-

ages, and video information on

swans will all be encoded in

the formal language.

• We can formally carry out this

process through an oracle ma-

chine consisting of a Turing

machine T and an oracle G.

• When a request is made by

T to G regarding a particular

string corresponding to a nat-

ural language statement, then

G expands this string by pro-

viding a coded collection of other

natural language statements that

explain the given string.

• These latter represent the range

of meanings of the given string.

• Meaning is emergent from the

large collection of interrelated

materials (e.g., dictionary def-

initions of “swan”, images and

videos containing “swans”) iden-

tified by the oracle.

Understanding and Reasoning

• Reasoning is modeled by the

selection of an effective com-

putational procedure (a model

of brain functioning) to trans-

form given information in the

form of a string into a conclu-

sion string.

• Such conclusions may only be

provisional steps in a reason-

ing process.



• The reasoning process is car-

ried out by a partial recursive

function that we think of as a

Turing machine.

• Such a model of reasoning need

be no more unique than are

human reasoners.

• Arbitrarily choose a Turing ma-

chine T .

• We will subsequently examine

the effect of other choices.

• Inductive support will be based

upon a notion of explanation.

• Explanation, in turn, will be

based upon how we compute

one statement from another.

• The concept of computation

is that of universal Turing ma-

chines (UTMs) denoted T, T1, T2,

etc.

• Modeling reasoning plausibly

requires a, not necessarily unique,

choice of TM.

• In what follows we assume that

reasoning relies upon a uni-

versal Turing machine (UTM).

• A UTM (they are all equiv-

alent in a sense to be clari-

fied later) is the most pow-

erful machine in that it is an

ideal general purpose computer.

Explanations

• String p is an explanation for

a given string h if and only if

p ∈ B and T (p) = h ∈ B, is defined.

• Equivalently, we can reason from

an explanation p to a conclu-

sion h.



• String p is a supplementary

explanation for a given string

h, in the presence of evidence

e, only if

p ∈ B and T (pe) = h ∈ B, is defined,

where pe is the concatenation

of the two strings.

• We can reason from e augmented

by p to h.

• Since T is a UTM, for any pair

e, h of evidence and hypothe-

sis strings, there are infinitely

many supplementary explana-

tion strings p.

Support Sets

• Let the range set

R(p) = {h′ : (∃e) T (pe) = h′}.

• The explanatory support set

P(h|e) is the set of all supple-

ments p to e such that

P(h|e) = {p : p ∈ B, T (pe) = h,

R(p) is countably infinite.}

• P(h|e) can also be truncated

to a finite set, as follows. First

observe that

(∀h)(∃h∗)(∀e) T (h∗e) = h

and |h∗| ≤ c + |h| + 2 log |h|.

• Why then consider supplemen-

tary explanations longer than

h∗?

• However, we do not take this

step.



Properties of P(h|e)

Assume a UTM T .

• For all h, e, P(h|e) is a count-

ably infinite set.

• If h != h′, then for any e,

P(h|e)⊥P(h′|e) (disjoint sets).

• For a given UTM T , the map-

ping from ordered pairs h|e to

support sets P(h|e) is many-

to-one.

• There can exist e != e′, h != h′

such that P(h|e) = P(h′|e′).

• There is no Turing machine

that given as input any triple

h, e and integer k produces as

output the k-th element of the

set P(h|e) in a given effective

enumeration of strings.

• Restated, P(h|e) is not an ef-

fectively computable function

of h, e.

Comparative Inductive Support

• Our object of interest is {h|e},

a set of ordered pairs of hy-

pothesis h and evidence e, with

h|e read as “the degree of in-

ductive support lent by e to

h”.

• We neither assume nor expect

that h|e will have a numerical

representation or evaluation.



• We assume only the existence

of a partial order h|e ! h′|e′

that is read “the inductive sup-

port lent by e to h is at least

as great as that lent by e′ to

h′”.

Understanding ! through Representation

• The “standard approach” is to

assume that there exists a con-

ditional probability P and

h|e ! h′|e′ ⇐⇒ P (h|e) ≥ P (h′|e′).

• P in Carnap’s approach comes

from choosing a prior on state-

ments in first-order predicate

logic that has invariance prop-

erties such as under interchange

of individuals.

Representation through a Partial Order

• We postulate that there ex-

ists a partial order !P and a

homomorphism from {h|e} to

{P(h|e)} that maps the order

! to !P through

h|e ! h′|e′ ⇐⇒ P(h|e) !P P(h′|e′).

• This postulate is needed be-

cause we have established that

there is a many-to-one map-

ping from {h|e} to {P(h|e)}

• This approach is directly mo-

tivated by work in mathemat-

ical psychology associated with

Suppes and Luce [10, 13].



• We postulate that it is only

the lengths of strings in P(h|e)

that are relevant to inductive

support.

• Other possible distinctions be-

tween p, q are: sequence com-

position; whether p is a per-

mutation of q, etc.

• These have not been consid-

ered owing to my lack of in-

tuition as to their inductive

consequences.

• A shorter supplementary ex-

planation provides more induc-

tive support than does a longer

one—Occam’s razor.

• We allow for multiple expla-

nations and do not insist upon

a single ‘best’ one—Epicurus.

• A greater number of multiple

explanations provides increased

robustness to an inference.

• For p to be a supplementary

explanation in an analysis of

the degree to which e supports

h, T (pe) must depend upon e.

• We can revisit this and con-

sider other syntactical distinc-

tions between strings if we can

identify an intuition regard-

ing their inductive significance.

Axiom of Sequence Representation

• The preceding motivates us to

reduce P(h|e) to a multiset

Lh|e = {|p| : p ∈ P(h|e)},

of the repeated lengths of strings,

• and in turn to a mathemat-

ically equivalent sequence or

function

Lh|e : Z+ → Z+

with Lh|e(i) = ‖{|p| : |p| = i, p ∈ P(h|e)}‖. (†)



• The desired homomorphism is

now to a partial order !L on

the set {Lh|e}.

• Axiom I: h|e ! h′|e′ ⇐⇒ Lh|e !L

Lh′|e′.

• This representation provides

a link to the work on case-

based reasoning by Gilboa and

Schmeidler [4].

Axiom of Dominance

• Axiom 2:
(
(∀i) Lh|e(i) ≥ Lh′|e′(i)

)

⇒ Lh|e !L Lh′|e′ ⇒ h|e ! h′|e′.

If, in addition, there is an in-

dex j such that Lh|e(j) > Lh′|e′(j),

then Lh|e %L Lh′|e′ and h|e %

h′|e′.

• This dominance axiom is mo-

tivated by the inductive de-

sirability of multiple explana-

tions.

• Replacing one-sided implica-

tion by a two-sided implica-

tion would provide too strin-

gent a notion of inductive sup-

port that would only rarely be

applicable.

Axiom of Redistribution

• Our philosophical position is

that a large number of smaller

supplementary explanations is

more convincing than a simi-

lar number of longer supple-

mentary explanations. We cap-

ture this through an Axiom

3 of redistribution defined as

follows.



• Given any L = {L(i)}, choose

indices m < n and define L′ as

(∀i #= m, n) L′(i) = L(i)

and L′(m) = L(n), L′(n) = L(m).

(Hence the two sequences agree

except at indices m, n where

they exchange values.)

• We postulate that

L(m) > L(n) ⇒ L %L L′;

L(m) < L(n) ⇒ L′ %L L.

Axiom of Additive Combination

• We introduce an Axiom 4 of

additive combination that is

drawn from Gilboa and Schmei-

dler [4], p.67.

•

L1 !L L2 (L1 !L L2) and L3 !L L4

⇒ L1+L3 !L L2+L4 (L1+L3 !L L2+L4).

• Adding such sequences together

will be shown to be meaning-

ful for sets of hypotheses.

• Equating L2 = L3 implies that

!L is transitive.

• It does not imply that !L is

complete, as assumed in Gilboa

and Schmeidler [4].

• Nor will we require complete-

ness.

• Theorem 1 establishes the Con-

sistency of Axioms 1,2,3,4, in

that they are consistent with

!L being a complete order.

• This complete order can be gen-

erated by a probability mass

function on strings that assigns

all strings of the same length

the same probability and strings

of greater length a lower prob-

ability.



Axiom of Stochastic Dominance

• Stochastic dominance holds be-

tween random variables, X stochas-

tically dominates Y , if the cor-

responding cumulative distri-

bution functions satisfy

(∀z ∈ R) FX(z) ≤ FY (z).

• In our context we define an

unnormalized cdf

(∀i) Fh|e(i) = FLh|e(i) =
∑

j≤i

Lh|e(j).

• If i < 0 then Fh|e(i) = 0.

• Axiom 5 is given by

(∀i) FLh|e(i) ≥ FLh′|e′
(i) ⇒ Lh|e !L Lh′|e′

⇐⇒ h|e ! h′|e′.

• If, in addition,

(∃j FLh|e(j) > FLh′|e′
(j) ⇒ Lh|e 'L Lh′|e′

⇐⇒ h|e ' h′|e′.

• For hypothesis h given evidence

e to be more strongly induc-

tively supported than is h′|e′

requires that there be a larger

number of shorter supplemen-

tary explanations for the for-

mer than for the latter.

• Theorem 2 asserts that when

Axiom 5 holds for ! then the

partial order also satisfies Ax-

ioms 1, 2, 3, 4, and is a reflex-

ive partial order.

Degrees of Comparative Inductive Support

• We use our representation to

introduce a series of succes-

sively stronger notions of com-

parative inductive support by

defining a family !γ as follows.

• For γ ≥ 1,

(∀i) Fh|e(i) ≥ Fh′|e′(i+γ) ⇒ h|e !γ h′|e′.



• Lemma 1 asserts:

• For γ ≥ 1, the partial ordering

is strict.

• Furthermore,

(γ > γ′) ⇒
(
h|e $γ h′|e′ ⇒ h|e $γ′ h

′|e′
)

,

but not conversely.

• We will use this notion of de-

grees of support to examine

the question of the robustness

of agnostic inductive support

to changes in the UTM by which

it is defined.

Robustness with Respect to Choice of UTM

• Theorem 3 asserts that given

any two UTMs T1, T2, there are

constants c12, c21 such that

(∀p1)(∃p2) |p2| ≤ c12 + |p1|

and T1(p1) = q =⇒ T2(p2) = q;

(∀p2)(∃p1) |p1| ≤ c21 + |p2|

and T2(p2) = q =⇒ T1(p1) = q.

• A sketch of the proof of this

theorem is based upon the ex-

istence of a self-limiting string

t12 (Gödel number), which when

prepended to a given program

p1, results in a concatenation

p2 that informs UTM T2 to em-

ulate T1 and provides it with

input p1.

Implication for Robustness

• We consider the effect on com-

parative inductive support of

a change from UTM T1 to UTM

T2.

• Let Li denote the sequence of

ordered string length occupan-

cies corresponding to use of Ti

for P(h|e); L
′
i denotes the cor-

responding sequence for P(h′|e′).



• It follows then that for any

two UTMs T1, T2, there exists

a constant c such that for all

h|e, h′|e′ and γ > 2c,

L1 "γ L
′
1 ⇒ L2 "γ−2c L

′
2.

• If h|e is sufficiently more strongly

supported than h′|e′, then a

change from UTM T1 to a “neigh-

boring” T2 will preserve the

weaker conclusion that h|e is

still at least as strongly sup-

ported as h′|e′.

Extending the Partial Order

• Any extension of !,!,!γ will

introduce a comparison that

contradicts the Axiom of Stochas-

tic Dominance.

• Pending a satisfactory addi-

tional axiom, we expect that

comparative inductive support

is only a partial ordering.

• We expect there to exist in-

comparable pairs h|e and h′|e′.

• There is room for an exten-

sion to subsets of hypotheses.

• Assume that we are given spe-

cific evidence e. Then we know

from Lemma 1 that P(h|e) and

P(h′|e) are disjoint sets for h "=

h′ and common evidence e.

• This suggests that to a family

of hypotheses H we associate

P(H|e) =
⋃

h∈H

P(h|e)

and define LH|e =
∑

h∈H

Lh|e.

• By the disjointness of the sup-

port sets for common e, no

programs are double-counted

in our summation.



• Of course, the new object LH|e

is again a sequence of nonneg-

ative integers and is ordered

by our original !L without any

need for an extended defini-

tion.

• Given a set H of hypotheses,

and common evidence e, we

extend ! to sets of hypothe-

ses through

H|e ! H ′|e′ ⇐⇒ LH|e !L LH ′|e′.

• For common evidence e we find

that

H ⊇ H ′ ⇒ (∀i ≥ 0) LH|e(i) ≥ LH ′|e

⇒ H|e ! H ′|e.

• This is a plausible conclusion.

A set of hypotheses is more

strongly supported than any

of its proper subsets.

Of What Use is Inductive Support?

• We can make inferences and

reach conclusions based upon

degrees of comparative induc-

tive support.

• We can also use inductive sup-

port to make rational decisions

dependent upon consequences,

although our current ability to

do this is rather anemic.

Inferences, Plausibility, Conclusions

• Perhaps we have reason to fo-

cus on e and on a subset H of

hypotheses.

• Agnostic comparative induc-

tive support provides insight

or understanding into the plau-

sibility of statement h when

we assume or know e.

• If, say, h|e !100 h′|e, then we

might discard the relatively im-

plausible h′ and reduce H.



• We can say that h|e is undom-

inated in H if there does not

exist h′|e′ ∈ H such that h′|e′ #

h|e.

• Our notion of comparative in-

ductive support enables us to

reduce H to its subset of un-

dominated pairs h|e.

• This is akin to the use of ad-

missibility in statistical anal-

ysis to restrict consideration

of possible decision rules.

• While this reduction might be

helpful it does not take into

account the consequences of

choosing an hypothesis h given

evidence e.

Inductively Supported Decision-Making

• If we think of this as personal

or individual decision-making

then we need to assume that

the individual accepts the as-

sessments of agnostic compar-

ative inductive support as their

personal beliefs.

• Such acceptance might be even

more plausible for group-based

decision-making.

Components of the Decision-Making Problem

States of the World: Assume a set

H = {h} of hypotheses that

describe the “states of the world”

or the alternatives that con-

cern us.

Evidence or Data: Evidence e ∈

E is known to the decision-maker

holds throughout the decision

process.



Set of Consequences: There is a

set C = {c} of the consequences

of our actions or decisions. This

set comes equipped with a com-

plete order !C that is anti-

symmetric. We will assume

C = {c1, . . . , cm} to be a finite

set with, without loss of gen-

erality,

i > j ⇐⇒ ci #C cj.

Decision Rule/Function: A deci-

sion is to be made about which

element ofH to select (“is true”,

although we lack the seman-

tics to make this a natural state-

ment). This decision is a func-

tion d of given evidence from

a set E = {e},

d : E → H, d ∈ D, d(e) = η.

Consequences of Decisions: The con-

sequence of a decision is pro-

vided by a gain function

g : H×H → C.

When we decide d(e) = η, based

on provided evidence e ∈ E

and the “correct” hypothesis

is h then we are awarded con-

sequence g(η, h) = c ∈ C.

Resulting Gamble: Given evidence

e and a decision η we are awarded

a gamble

G(η) =
⋃

c∈C
({h : g(η, h) = c}, c)

that is a union of ordered pairs

(Hc, c) consisting of the sub-

set Hc of hypotheses paying

off with consequence c when

we make decision d(e) and the

consequence c itself.



Restated, there is a partition

{Hc : c ∈ C} of H and a gamble

in our setting is a set

G =
⋃

c∈C
(Hc, c),

and a gamble is a subset of H×

C.

Objective: To partially order by

!G the set G = {G} of gambles

in accordance with the deci-

sion maker’s preferences.

Preferences for Gambles

• The preference order !G is in

effect a joint order constructed

from a combination of inde-

pendent type out of the marginal

order ! on subsets H|e of the

form {h : g(d(e), h) = c} and the

marginal order on individual

consequences given by !C.

• This brings us to comparative

probability, albeit in the con-

text of partial orders.

• If A and B are families of sub-

sets of sets ΩA, ΩB with non-

null-equivalent elements Ai ∈

A, Bi ∈ B, then a comparative

probability order !A×B of in-

dependent type satisfies

(∀A ∈ A)(∀B1, B2 ∈ B)

(A, B1) !A×B (A, B2) ⇐⇒

(A, B1) !A×B (A, B2);

and similarly if we interchange

As and Bs.

• Marginals are preserved in the

joint order if

A !A A′ ⇐⇒ (A, ΩB) ! (A′, ΩB),

and similarly for the subsets

in B.

• The existence of such joint or-

ders depends upon character-

istics of the marginal orders

and has been studied by many,

perspicuously by Kaplan [5] and

Kaplan and Fine [6].



• We can narrow the class of ac-

ceptable partial preference or-

der !G through dominance ax-

ioms of the kind discussed above.

• What is missing, however, from

our approach is the key notion

of a mixture distribution.

• While a mixture axiom seems

innocent to many, it is indeed

substantive, as evidenced by

the work it does.

• In von Neumann-Morgenstern

approaches to utility and sub-

jective probability pioneered

by de Finetti and Jimmie Sav-

age, we must extend our known

preferences to preferences be-

tween mixtures of those gam-

bles we care about.

• We leave this matter unfinished.


