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Standard Statistical Model

® 'Evidence” maps to 'Data”

® 'Hypothesis” maps to ""Model” and/or
unobserved data.

® Not precise correspondence---our approach
is more general.

® We do not start with a likelihood function
or prior over models.

Background to Inductive
Inference

® A long-studied but less well understood
probabilistic notion relates to
indeterminacy---the given facts or evidence
(expressed in a formal language) only
partially deductively support the conclusion or
hypothesis.

® There is no logical deduction from the

evidence e to the hypothesis h.

® Motivated by early work of Keynes, we let

hle represent the degree of inductive support
lent to h by e.



® Numerical assessments of partial degrees of
support were first proposed by Leibniz.

® The "'standard approach” is to assume that

® This was meant for the area of legal trials there exists a conditional probability P and
(Leibniz’ concern) but more generally that of hle >= h'le’ if and only if P(hle) >=P(h’|e).
inductive reasoning or inference, including
statistical inference.

® Where does the conditional probability

. . ® Inductive relations have an inherent
come from in a general setting?

indefiniteness or imprecision that may not
be expressible by standard numerical

® Perhaps it comes from an argument made by probability

Solomonoff in the early 1960s when he

derived a universal semicomputable prior. e We hold that standard probability and upper

and lower probability are too expressive to

® However, assigning any numerical value, of . .
> assIghing any ’ model inductive support.

whatever origin, to the support lent by
evidence to hypothesis will automatically
make accessible a complete ordering
according to this support.

® Nor need all pairs h|e and h’|e’ be
comparable.




® We assume only the existence of a partial
ordering between pairs hle and h'le’ that is
understood as " "the inductive support lent
by evidence e to hypothesis h is as at least as
great as that lent by e'to h.

Syntax

e We take for our simple formal
language one with the syntax
of the set B = {0, 1}* of all finite-

length binary-valued strings.

e This set of strings is closed
under concatenation, an op-
eration allowing us to form a

new string from two given strings.

e Our proposal places the think-
ing of Keynes in the context
of computational or algorith-
mic considerations that relate

to Kolmogorov complexity.

o We depart from a real-valued
assessment of inductive sup-
port and consider instead an
ordering of levels of inductive

support.

Semantics

e The formal language does not
preserve explicitly the “true-
false” semantics of the origi-

nal language.

o We expect that statements in
the natural language will be
expanded before being encoded
into the formal language so as
to appear with their various

meanings.



e For example, if the word “swan”
appears in the natural language
statement then there will be a
full presentation about swans
including other text usages, im-
ages, and video information on
swans will all be encoded in

the formal language.

o We can formally carry out this
process through an oracle ma-
chine consisting of a Turing

machine T and an oracle G.

e When a request is made by
T to G regarding a particular
string corresponding to a nat-
ural language statement, then
G expands this string by pro-
viding a coded collection of other
natural language statements that

explain the given string.

e These latter represent the range

of meanings of the given string.

e Meaning is emergent from the
large collection of interrelated
materials (e.g., dictionary def-
initions of “swan”, images and
videos containing “swans”) iden-

tified by the oracle.

Understanding and Reasoning

e Reasoning is modeled by the
selection of an effective com-
putational procedure (a model
of brain functioning) to trans-
form given information in the
form of a string into a conclu-

ston string.

e Such conclusions may only be
provisional steps in a reason-

ing process.



e The reasoning process is car-
ried out by a partial recursive
function that we think of as a

Turing machine.

e Such a model of reasoning need
be no more unique than are

human reasoners.

e Arbitrarily choose a Turing ma-

chine 7.

e We will subsequently examine

the effect of other choices.

e Modeling reasoning plausibly
requires a, not necessarily unique,

choice of TM.

e In what follows we assume that
reasoning relies upon a wuni-

versal Turing machine (UTM).

e A UTM (they are all equiv-
alent in a sense to be clari-
fied later) is the most pow-
erful machine in that it is an

ideal general purpose computer.

e Inductive support will be based

upon a notion of explanation.

e Explanation, in turn, will be
based upon how we compute

one statement from another.

o The concept of computation
is that of universal Turing ma-
chines (UTMs) denoted T, 17, 15,

etc.

Explanations

e String p is an explanation for

a given string h if and only if
p € B and T'(p) = h € B, is defined.
e Equivalently, we can reason from

an explanation p to a conclu-

sion h.



e String p is a supplementary
explanation for a given string
h, in the presence of evidence

e, only if

p € B and T(pe) = h € B, is defined,

where pe is the concatenation

of the two strings.

o We can reason from e augmented

by p to h.

e Since T is a UTM, for any pair
e, h of evidence and hypothe-
sis strings, there are infinitely
many supplementary explana-

tion strings p.

Support Sets
o Let the range set
R(p) = {1+ (3e) T(pe) = h'}.
o The explanatory support set

P(hle) is the set of all supple-

ments p to e such that

P(hle) ={p:pe B, T(pe) =h,
R(p) is countably infinite.}

e P(hle) can also be truncated
to a finite set, as follows. First

observe that
(Vh)(3h™)(Ve) T(h*e) = h
and |h*| < c+ |h| + 2log |h|.
e Why then consider supplemen-

tary explanations longer than

h*?
e However, we do not take this

step.



Properties of P(hle)
Assume a UTM T.

e For all h,e, P(hle) is a count-
ably infinite set.
o If h # I/, then for any e,

P(hle) LP(K|e) (disjoint sets).

e There is no Turing machine
that given as input any triple
h,e and integer k produces as
output the k-th element of the
set P(hle) in a given effective

enumeration of strings.
e Restated, P(h|e) is not an ef-

fectively computable function

of h,e.

e For a given UTM T, the map-
ping from ordered pairs hle to
support sets P(hle) is many-

to-one.

e There can exist ¢ # ¢/,h # I
such that P(hle) = P(K|¢)).

Comparative Inductive Support

e Our object of interest is {h|e},
a set of ordered pairs of hy-
pothesis h and evidence e, with
hle read as “the degree of in-
ductive support lent by e to
h”.

® We neither assume nor expect
that hle will have a numerical

representation or evaluation.



e We assume only the existence
of a partial order hle = h'|¢/
that is read “the inductive sup-
port lent by e to h is at least
as great as that lent by ¢’ to
n'.

Understanding - through Representation

e The “standard approach” is to
assume that there exists a con-

ditional probability P and
hle = W|e/ <= P(hle) > P(K|¢)).

e P in Carnap’s approach comes
from choosing a prior on state-
ments in first-order predicate
logic that has invariance prop-
erties such as under interchange

of individuals.

Representation through a Partial Order

e We postulate that there ex-
ists a partial order Zp and a
homomorphism from {hle} to
{P(hle)} that maps the order
- to 7Zp through

hle == I'|e! <= P(hle) Zp P(H|€).

e This postulate is needed be-
cause we have established that

there is a many-to-one map-

ping from {hle} to {P(hle)}

e This approach is directly mo-
tivated by work in mathemat-
ical psychology associated with

Suppes and Luce [10, 13].



e We postulate that it is only
the lengths of strings in P(hle)
that are relevant to inductive

support.

e Other possible distinctions be-
tween p,q are: sequence com-
position; whether p is a per-

mutation of ¢, etc.

e These have not been consid-
ered owing to my lack of in-
tuition as to their inductive

consequences.

e For p to be a supplementary
explanation in an analysis of
the degree to which e supports
h, T(pe) must depend upon e.

e We can revisit this and con-
sider other syntactical distinc-
tions between strings if we can

identify an intuition regard-

ing their inductive significance.

o A shorter supplementary ex-
planation provides more induc-
tive support than does a longer

one—QOccam’s razor.

o We allow for multiple expla-
nations and do not insist upon

a single ‘best’ one—Epicurus.

e A greater number of multiple
explanations provides increased

robustness to an inference.

Axiom of Sequence Representation

e The preceding motivates us to

reduce P(hle) to a multiset

Lpje ={Ipl : p € P(hle)},
of the repeated lengths of strings,

e and in turn to a mathemat-
ically equivalent sequence or

function

Ly 2" —17z*

e

with Ly (i) = [[{Ip] - [p| =i, p € P(h

e)}-



e The desired homomorphism is
now to a partial order ~; on

the set {Lj.}.

e Axiom I: hle = h/|¢/ — Lpe ZL
Lh/'el.

e This representation provides
a link to the work on case-

based reasoning by Gilboa and

Schmeidler [4].

e Replacing one-sided implica-
tion by a two-sided implica-
tion would provide too strin-
gent a notion of inductive sup-
port that would only rarely be
applicable.

Axiom of Dominance

o Axiom 2:

(V) Lyjeli) = i)

= L. = Lo = hle = K'|€.
If, in addition, there is an in-
dex j such that Ly .(j) > Ly (j),
then Ly, -1 Ly, and hle -
n'le’.

e This dominance axiom is mo-
tivated by the inductive de-

sirability of multiple explana-

tions.

Axiom of Redistribution

e Our philosophical position is
that a large number of smaller
supplementary explanations is
more convincing than a simi-
lar number of longer supple-
mentary explanations. We cap-
ture this through an Axiom
3 of redistribution defined as

follows.



e Given any L = {L(i)}, choose
indices m < n and define L' as
(Vi #m,n) L'(i) = L(i)
and L'(m) = L(n), L'(n) = L(m).
(Hence the two sequences agree

except at indices m,n where

they exchange values.)
e We postulate that

L(m)> L(n) = L = L,
L(m) < L(n)= L = L.

e Equating Ly = L3 implies that
=1, is transitive.
e It does not imply that = is

complete, as assumed in Gilboa

and Schmeidler [4].

e Nor will we require complete-

ness.

Axiom of Additive Combination

e We introduce an Axiom 4 of
additive combination that is
drawn from Gilboa and Schmei-

dler [4], p.67.

Ly Zp Lo (L1 =1, L) and L3 1, Ly

= L1+L3 zL Lo+1Ly (L1+L3 L L2+L4).

e Adding such sequences together
will be shown to be meaning-

ful for sets of hypotheses.

o Theorem 1 establishes the Con-
sistency of Axioms 1,2,3.4, in
that they are consistent with

~-1, being a complete order.

e This complete order can be gen-
erated by a probability mass
function on strings that assigns
all strings of the same length
the same probability and strings
of greater length a lower prob-

ability.



Axiom of Stochastic Dominance

e Stochastic dominance holds be-
tween random variables, X stochas-
tically dominates Y, if the cor-
responding cumulative distri-

bution functions satisfy
(VZ S R) FX(Z) < Fy(z).

e In our context we define an

unnormalized cdf
(Vi) Fpjeli) = Fr,,, () = > Lpje().
J<i
o If i <0 then Fj (i) = 0.

e Axiom 5 is given by
(Vi) FLh‘e(i) 2 FL,L/‘E/(i) = Lh|e L Lh’|e/
> hlez M.
o If, in addition,

(Hj FLh\c(j) > FLIL’\@’(j) = Lh|e > Lh’\e'

<= hle = K|¢.

e For hypothesis h given evidence
e to be more strongly induc-
tively supported than is A’|¢/

requires that there be a larger

number of shorter supplemen-

tary explanations for the for-

mer than for the latter.

e Theorem 2 asserts that when
Axiom 5 holds for 77 then the
partial order also satisfies Ax-
ioms 1, 2, 3, 4, and is a reflex-

ive partial order.

Degrees of Comparative Inductive Support

o We use our representation to
introduce a series of succes-
sively stronger notions of com-
parative inductive support by

defining a family - as follows.
e For v > 1,

(Vi) Fh|e<i) > Fh/|e/(z’+’y) = hle b’ h/|€/.



e Lemma 1 asserts:

e For v > 1, the partial ordering

is strict.
e Furthermore,
(v>) = (h!e =~ B¢/ = hle = h/\e/> ,
but not conversely.
o We will use this notion of de-
grees of support to examine
the question of the robustness
of agnostic inductive support

to changes in the UTM by which
it is defined.

e A sketch of the proof of this
theorem is based upon the ex-
istence of a self-limiting string
t12 (Godel number), which when
prepended to a given program
p1, results in a concatenation
po that informs UTM 75 to em-
ulate 77 and provides it with

input p.

Robustness with Respect to Choice of UTM

® Theorem 3 asserts that given
any two UTMs 77,75, there are

constants cj9, co; such that

(Vp1)(3p2) Ip2| < c12+ |p1

and Ty(p1) = ¢ = Ta(p2) = ¢
(Vp2)(3p1) Ip1| < e + |p2

and Th(p2) =q = Ti(p1) = ¢

Implication for Robustness

o We consider the effect on com-
parative inductive support of
a change from UTM T} to UTM
Ts.

e Let L; denote the sequence of
ordered string length occupan-
cies corresponding to use of T;
for P(hle); L; denotes the cor-

responding sequence for P(1/|¢/).



o It follows then that for any
two UTMs 717,75, there exists
a constant ¢ such that for all

hle, |’ and ~y > 2c,
/ /
Ly b’ Ll = Lo =y—2c LQ.

e If h|e is sufficiently more strongly
supported than 7/|¢/, then a
change from UTM T to a “neigh-
boring” T, will preserve the
weaker conclusion that hle is
still at least as strongly sup-

ported as I/|¢'.

® There is room for an exten-

sion to subsets of hypotheses.

e Assume that we are given spe-
cific evidence e. Then we know
from Lemma 1 that P(hle) and
P(h'|e) are disjoint sets for h #

k' and common evidence e.

Extending the Partial Order

e Any extension of 7, -, =, will
introduce a comparison that
contradicts the Axiom of Stochas-

tic Dominance.

e Pending a satisfactory addi-
tional axiom, we expect that
comparative inductive support

is only a partial ordering.

e We expect there to exist in-

comparable pairs hle and A’|¢’.

e This suggests that to a family
of hypotheses H we associate

P(Hle) = | P(hle)

heH
and define LH\e = Z Lh\e'
heH
e By the disjointness of the sup-

port sets for common e, no
programs are double-counted

in our summation.



e Of course, the new object LH|e
is again a sequence of nonneg-
ative integers and is ordered
by our original 77; without any
need for an extended defini-

tion.

e Given a set H of hypotheses,
and common evidence e, we
extend - to sets of hypothe-
ses through

Hlez H'ld' <= Ly Zr Ly

|6/'

Of What Use is Inductive Support?

e We can make inferences and
reach conclusions based upon
degrees of comparative induc-

tive support.

® We can also use inductive sup-
port to make rational decisions
dependent upon consequences,
although our current ability to

do this is rather anemic.

e For common evidence e we find

that

H2H' = (Vi >0) Ly (i) > Ly

e

= Hle - Hle.

e This is a plausible conclusion.
A set of hypotheses is more
strongly supported than any

of its proper subsets.

Inferences, Plausibility, Conclusions

e Perhaps we have reason to fo-
cus on ¢ and on a subset H of

hypotheses.

e Agnostic comparative induc-
tive support provides insight
or understanding into the plau-
sibility of statement h when

we assume or know e.
e If, say, hle =190 h|e, then we
might discard the relatively im-

plausible »/ and reduce H.



e We can say that hle is undom-
inated in H if there does not
exist /|’ € H such that A'|¢’ =~
hle.

e Our notion of comparative in-
ductive support enables us to
reduce H to its subset of un-

dominated pairs hle.

e This is akin to the use of ad-
misstbility in statistical anal-
ysis to restrict consideration

of possible decision rules.

o While this reduction might be
helpful it does not take into
account the consequences of
choosing an hypothesis h given

evidence e.

Inductively Supported Decision-Making

e If we think of this as personal
or individual decision-making
then we need to assume that
the individual accepts the as-
sessments of agnostic compar-
ative inductive support as their

personal beliefs.

e Such acceptance might be even
more plausible for group-based

decision-making.

Components of the Decision-Making Problem

States of the World: Assume a set
H = {h} of hypotheses that
describe the “states of the world”
or the alternatives that con-

cern us.

Evidence or Data: Evidence ¢ €
£ is known to the decision-maker
holds throughout the decision

process.



Set of Consequences: There is a
set C = {c} of the consequences
of our actions or decisions. This
set comes equipped with a com-
plete order -~ that is anti-
symmetric. We will assume
C ={ci,...,cm} to be a finite
set with, without loss of gen-

erality,

1>] = ¢ -C ¢y

Decision Rule/Function: A deci-
sion is to be made about which
element of H to select (“is true”,
although we lack the seman-
tics to make this a natural state-
ment). This decision is a func-
tion d of given evidence from

a set £ = {e},

d:&—H, deD, dle)=n.

Consequences of Decisions: The con-
sequence of a decision is pro-

vided by a gain function
g:HxH-—C.

When we decide d(e) = 1, based
on provided evidence ¢ € &
and the “correct” hypothesis
is h then we are awarded con-

sequence g(n,h) =c € C.

Resulting Gamble: Given evidence

e and a decision 1 we are awarded

a gamble
G = J{h:g(n,h) =c},0)
ceC

that is a union of ordered pairs
(He,c) consisting of the sub-
set H. of hypotheses paying
off with consequence ¢ when
we make decision d(e) and the

consequence c itself.



Restated, there is a partition

{H:: c €C} of H and a gamble

in our setting is a set
G=|J(H:c),

ceC
and a gamble is a subset of H x

C.

Objective: To partially order by
Z¢ the set G = {G} of gambles
in accordance with the deci-

sion maker’s preferences.

Preferences for Gambles

e The preference order g is in
effect a joint order constructed
from a combination of inde-
pendent type out of the marginal
order - on subsets H|e of the
form {h : g(d(e), h) = ¢} and the
marginal order on individual

consequences given by ~¢.

e This brings us to comparative
probability, albeit in the con-

text of partial orders.

e If A and B are families of sub-
sets of sets (14,{lp with non-
null-equivalent elements A; €
A, B; € B, then a comparative
probability order = 4.5 of in-
dependent type satisfies

(VA € A)(VBy, By € B)
(A7Bl) zAXB (Av BQ) —
(Av Bl) E_JAXB (-Aa BQ);

and similarly if we interchange

As and Bs.

e Marginals are preserved in the

joint order if
Az A = (A Qp) Z (A Qp),

and similarly for the subsets
in B.

e The existence of such joint or-
ders depends upon character-
istics of the marginal orders
and has been studied by many,
perspicuously by Kaplan [5] and
Kaplan and Fine [6].



e We can narrow the class of ac-
ceptable partial preference or-

der g through dominance ax-

ioms of the kind discussed above.

e What is missing, however, from

our approach is the key notion

of a mixture distribution.

e While a mixture axiom seems
innocent to many, it is indeed
substantive, as evidenced by

the work it does.

o In von Neumann-Morgenstern
approaches to utility and sub-
jective probability pioneered
by de Finetti and Jimmie Sav-
age, we must extend our known
preferences to preferences be-
tween mixtures of those gam-

bles we care about.

® We leave this matter unfinished.



